
15.1.2010 Jaana Holvikivi 1

XML design

15.1.2010 Jaana Holvikivi 2

XML – meta language

� Each XML document has both a logical and a physical
structure.

� Physically, the document is composed of units called
entities. An entity may refer to other entities to cause
their inclusion in the document. A document begins in a
"root" or document entity.

� Logically, the document is composed of declarations,
elements, comments, character references, and
processing instructions, all of which are indicated in the
document by explicit markup.

� The logical and physical structures must nest properly

� User decides

� Element names

� Element order and hierarchy

� DTD or Schema = grammar

15.1.2010 Jaana Holvikivi 3

DTD

<!– Document type description (DTD) example (part) -->

<!ELEMENT university (department+)>
<!ELEMENT department (name, address)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>

� Document type description, structural description

� one rule /element

� name

� content

� a grammar for document instances

� ”regular clauses"

� (not necessary)

15.1.2010 Jaana Holvikivi 4

DTD use

� validating parser

� checks that the document conforms to the DTD

� logical use of tags

� existing DTD standards for many application areas

� common vocabulary

� Replaced by XML Schema in new applications

15.1.2010 Jaana Holvikivi 5

XML design: Granularity 1

<country>
<state>
Washington, Seattle

</state>
<state>
Washington D.C., Washington

</state>
</country>

15.1.2010 Jaana Holvikivi 6

Granularity 2

<country>
<state>

<state_name>Washington</state_name>
<capital>Seattle</capital>

</state>
<state>

<state_name>Washington D.C.</state_name>
<capital>Washington</capital>

</state>
</country>

� The more structure the more tags

� fine or coarse

� fine granularity adds information and allows exact
search and fine-tuned formatting

15.1.2010 Jaana Holvikivi 7

Tree terminology

� document as a tree of nodes

� different types of nodes, including element nodes,
attribute nodes and text nodes

� Root element, nodes, leaves

� axis

� child node; descendant

� parent, ancestor

� following-sibling, preceding-sibling

15.1.2010 Jaana Holvikivi 8

Document tree

Ancestor

Parent / ancestor

Sibling Node

Child /descendant Attribute

Descendant

Namespace

15.1.2010 Jaana Holvikivi 9

Attributes

� Element property or contents

� attached to opening tags (or empty element tags)

� attribute name

� attribute value

� only one value

� the value can contain any characters

<book author=”Oscar Wilde">
...
</book>

<book keywords="XML SGML">
...
</book>

15.1.2010 Jaana Holvikivi 10

Reserved attributes

� xml:space

� showing 'white space' or not

� values: preserve or default

� white space characters:

character Unicode value

tab #x9

newline #xA

carriage return #xD

space #x20

MacOS CR,

Unix LF,

Windows CR LF

� normalization removes extra white space

15.1.2010 Jaana Holvikivi 11

Reserved attributes

xml:lang

� document language

� ISO 639 (+ ISO 3166, countries)

� or user defined or IANA

<product>
<paragraph xml:lang="en">
...
</paragraph>
<paragraph xml:lang="fi">
...
</paragraph>
</product>

15.1.2010 Jaana Holvikivi 12

xml:lang

<p xml:lang="en">The quick brown fox
jumps over the lazy dog.</p>
<p xml:lang="en-GB">What colour is it?</p>
<p xml:lang="en-US">What color is it?</p>

<sp who="Faust" desc='leise' xml:lang="de">
<l>Habe nun, ach! Philosophie,</l>
<l>durchaus studiert mit heißem Bemüh'n.</l>
</sp>

15.1.2010 Jaana Holvikivi 13

Here are some of the problems using
attributes

vs. child elements:

� attributes cannot contain multiple values
(child elements can)

� attributes are not easily expandable (for future
changes)

� attributes cannot describe structures
(child elements can)

� attributes may be more difficult to manipulate by
program code

� attribute values are not easy to test against a DTD

15.1.2010 Jaana Holvikivi 14

farm

farmer farm_hand

Tree diagrams

dairy_farm forestry_farm

farm
dairy_farm

name

#PCdata

<!ELEMENT farm (farmer, farm_hand)>

<!ELEMENT farm (dairy_farm | forestry_farm)>

age

15.1.2010 Jaana Holvikivi 15

SGML

� Standard Generalised Markup Language

� standard 1986 (ISO)

� contains also DTD and style sheets

� complex

� tools are complicated and difficult to develop, they are
expensive and not too many

� XML is a subset of SGML

� is typically used in large applications, for example
aircraft documentation and paper machine manuals

15.1.2010 Jaana Holvikivi 16

HTML

� Hypertext Markup Language (and HTTP protocol)

� based on SGML

� a great success

� non-standard extensions

� numerous tools

� predefined format

� applicable when one needs to show information

� looks neat on browsers

15.1.2010 Jaana Holvikivi 17

XML - SGML - HTML

� XML combined features from SGML and HTML

� many tools

� XHTML follows XML recommendation

� cannot solve all problems alone

� all three languages are needed (XML, HTML, SGML)

SGML

HTML

XML

XHTML

15.1.2010 Jaana Holvikivi 18

The design goals for XML 1

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML
documents.

5. The number of optional features in XML is to be kept to
the absolute minimum, ideally zero.

15.1.2010 Jaana Holvikivi 19

The design goals for XML II

6. XML documents should be human-legible and reasonably
clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance

15.1.2010 Jaana Holvikivi 20

Entities

� Units of storage, for example the document entity:
contains the entire document

� general entities

� can include any well-formed content

� parameter entities (in DTDs)

� internal entities

� character references

� external entities

� parsed entities - text

� unparsed entities - images, sound, binary files

15.1.2010 Jaana Holvikivi 21

Use of parsed entities

When we have the entity &metrop; containing a string
of characters
”Helsinki Metropolia University of Applied Sciences"

we could write

I study at the &metrop;.

� Avoid < and >

� reserved entities: < and >

� some processors are able to interpret

� if user writes in a math expression < and >
processor would interpret as strings < and >

15.1.2010 Jaana Holvikivi 22

Processing of entities

� XML processors must interpret entities correctly

� replacement of text (well-formed XML)

� binary entities are included in the document

� no recursion is allowed (reference to itself)

15.1.2010 Jaana Holvikivi 23

Processing of XML documents

XML

Document
Formatting

Formatted

document:

XHTML,

text, XML

XSLT

style sheet

DTD or

Schema

CSS

style sheet

entities

15.1.2010 Jaana Holvikivi 24

XML is the basis for RDF and the
Semantic Web

� Resource Description Framework (RDF) is an XML text
format that supports resource description and metadata
applications

� RDF integrates applications and agents into one
Semantic Web

� Formal descriptions of terms in a certain area (shopping
or manufacturing, for example) are called ontologies

� for example Dublin Core and RosettaNet

15.1.2010 Jaana Holvikivi 25

Well-formed documents

� An XML document is well-formed if it

� has a properly nested (hierarchical) tree structure,

� complies with the basic syntax and structural rules of
the XML 1.0 specification,

� and its every parsed entity is well-formed

15.1.2010 Jaana Holvikivi 26

XML parser or processor

� stops when an error is encountered, is not allowed to
guess as opposed to HTML browsers

� IE contains MSXML

� all browsers include a parser

� Apache project Xerces (Java, C++)

� Saxon

� .NET Visual Studio

